If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=10t+t^2
We move all terms to the left:
50-(10t+t^2)=0
We get rid of parentheses
-t^2-10t+50=0
We add all the numbers together, and all the variables
-1t^2-10t+50=0
a = -1; b = -10; c = +50;
Δ = b2-4ac
Δ = -102-4·(-1)·50
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{3}}{2*-1}=\frac{10-10\sqrt{3}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{3}}{2*-1}=\frac{10+10\sqrt{3}}{-2} $
| x-0.06*x=588 | | 6(4x-3)+7(x-1)=9 | | x+0.06*x=588 | | 2=x*1+1+2 | | 2=x*1+1+1 | | -10-2x=4-6x | | 6d–2d=20 | | -14÷s=32 | | 11*a=-1 | | 3(n+8)=56 | | 1.2x-2=0.4 | | x+0.05x=1.05x | | (0,1)^3x-4=100 | | X^3+3^(3÷2)x-6=0 | | 6x-2=4x+101 | | 2(x+8)+x=46 | | 8^2x=45 | | x²+12x=3.69 | | 5^x=15 | | 10/100=4/x | | (1/3)x+10=(3/5)x | | 3^(2x)+3^(x)-6=0 | | 5y−5=2y+7 | | 4y^2+25y+25=0 | | N^(n-2)=1000000 | | 0,5x+3=x+1 | | 3-9p=-6-8p | | Y=5x^2-6x+4 | | 5r+4r+63=126 | | 5q+3q+80=80 | | y=7*2,71828-6*B6^3+0,0015*B6^2+0,03*B6-0,4402 | | 10n+5n=90 |